铨水大黄产地加工方法研究

代婉莹¹,孙维宏²,毛淑杰¹,顾雪竹¹,钮正睿¹,肖壁英²,宋秉生²,李先端¹*

(1. 中国中医科学院中药研究所, 北京 100700; 2. 甘肃神州红药材科技有限公司, 甘肃 天水

[摘要] 目的: 优选铨水大黄适宜的产地加工方法, 为产地加工炮制一体化打下基础。方法: 采用 HPLC 方法, 色谱柱填 料为 Kromasil $C_{18}(4.6 \text{ mm} \times 150 \text{ mm}, 5 \text{ } \mu\text{m})$,检测波长 254 nm。流动相甲醇-0.1% 磷酸溶液(85.15) 比较 5 种蒽醌成分含量。 结果: 铨水大黄切片、切条采用微波干燥方法和阴干方法,5种蒽醌较其他方法含量高,且药材饮片外观性状好。微波干燥方法 简单,时间短,阴干所需时间较长。结论:微波干燥方法可用于大黄产地加工规模化大生产。该新的加工方法,解决了铨水大 黄产地加工时间长、糠芯、发霉、变质等关键问题。

[关键词] 铨水大黄; 5 种蒽醌苷元; 高效液相法; 加工干燥方法

[中图分类号] R284.1 「文献标识码」 B [文章编号] 1005-9903(2010) 08-0090-04

中药大黄为廖科植物掌叶大黄或唐古特大黄等 的干燥去皮根茎及根,多为栽培品。 经国内外研究 证明,其所含蒽醌类成分为其主要有效成分[12]。历 史上大黄形成商品规格较多,其中商品西大黄主要 是"铨水型大黄",其原植物主要为掌叶大黄 Rheum palmatum L., 另外有少量唐古特大黄 R. tanguticum Maxim ex Balf.。"铨水型大黄"主产于甘肃礼县及 铨水、西固等,其栽植史已逾千年。 铨水大黄出口有 "中国铨黄"之称,可见铨水大黄在历代中药应用中 的重要性。但目前甘肃铨水大黄也存在一些问题, 如栽培品与天然大黄质量评价研究欠缺;个别地区 产地加工方法不当,特别是由于大黄药材个大,整个 干燥比较慢, 致使药材在加工干燥过程中, 容易出现 糠芯、发霉、变质、变色等;没有统一的饮片炮制工艺 及质量控制标准等等,导致药材、饮片质量下降。因 此急需研究制定产地加工炮制一体化操作规程,制 订统一的技术质量标准和工艺标准。本研究以 HPLC 方法测定铨水大黄 5 种蒽醌类成分的含量为 主要指标,结合传统外观判断等,比较铨水大黄趁鲜 切制的不同加工方法,优选出合适的产地加工、干燥 方法。

仪器和试药

[收稿日期] 2010-05-20

[基金项目] 国家"十一五"科技支撑(2007BAI37B04)

[通讯作者] 李 先 端,从 事 中 药 质 量 研 究; Tel: (010)

84036552, E-mail: maoshujie@ 163. com

Waters 高效液相色谱系统(600 Separations

Module, 2487 Photodiode Array Detector, Empower 色 谱工作站); BP211D型, BS210S型电子天平(德国 Sartorius 公司); 超声波清洗器 KQ2200 型(昆山市超 声波清洗器有限公司);其余所用试剂均为分析纯。 芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚对 照品购于中国药品生物制品检定所(批号分别为 $079529803,\ 07572200005,\ 07562200211,\ 07962200005,$ 075822000006, 供含量测定用)。 大型鼓风干燥设备 (密云中医院);履带式微波快速干燥机(北京康港 食品开发有限公司);冷冻干燥机(LGJ-18B型)。鲜 铨水大黄采自甘肃礼县, 干大黄采购自主产地: 管 亭,沙井,好梯 I 号,好梯 II 号,经本所胡世林研究员 鉴定均为掌叶大黄 R. palmatum L.。

2 方法

采挖生长 3 年的 铨水大黄, 切长条(直径约 5 cm)、切片(2~3 cm),分别按下法处理 按传统方 法自然阴干干燥; 采用家用微波设备在实验室操 作(750 W, 中高火), 取500 g放入微波炉盒中(盖上 盖) 微 10 min; 采用工厂用大型微波设备功率 20 kW, 转速 300 SD 90 条件下快速微波干燥; 20 kW, 600 SD kW, 450SD 条件下快速微波干燥。 3 种条件下快速微波干燥; 在实验室小型烘箱中 45 烘干; 在密云中医院采用大型鼓风干燥设备 中逐步升温,从18 最后到 50 ~30 (高温)两种不同温度烘干: (低温)和60 ~65

采用 LGJ-18B 型冷冻干燥机干燥, 具体方法是将 冷冻干燥机抽真空 28 h. 冷冻温度为 - 67 左右时 放入大黄样品,冷冻 15 h 后将物料提出,既得。

2.1 含量测定方法^[3]

第 16 卷第 8 期

2010年7月

- **2.1.1** 色谱条件 Kromasil-C₁₈色谱柱(4.6 mm × 150 mm, 5 µm), 检测波长 254 nm, 流动相甲醇-0.1%磷酸溶液(85 15),流速1.0 mL·min¹,柱温 ,5种蒽醌色谱峰相互分离度大于 1.5, 理论塔 板数按大黄素峰计算不低于3 000。
- **2.1.2** 流动相选择 通过采用甲醇-0.2% 冰醋酸 溶液(85 15)、甲醇-0.1% 高氯酸溶液(85 15,80 20)、甲醇-0.1%磷酸溶液(85 15)等流动相试验比 较, 结果以甲醇-0.1% 磷酸溶液(85 15) 作为流动 相,大黄5种蒽醌分离效果较好,与杂峰达到基线分 离。对高效液相测定大黄的流动相进行了选择,流 动相中加入不同种类的酸对 5 种蒽醌的分离有很大 的影响, 经比较本方法快速、重现性好、稳定, 可用于 炮制原理、工艺、质量等研究。
- 2.1.3 对照品溶液的制备 精密称取芦荟大黄素、 大黄酸、大黄素、大黄酚对照品各 2 mg, 大黄素甲醚 1 mg, 分别置 25 mL 量瓶中, 用甲醇溶解并稀释至刻 度,摇匀;分别精密量取芦荟大黄素、大黄酸、大黄 素、大黄酚、大黄素甲醚溶液各2 mL, 置 10 mL 量瓶 中,摇匀,即得(每1 mL中含芦荟大黄素、大黄酸、大 黄素、大黄酚 16 µg、含大黄素甲醚 8 µg)。
- 2.1.4 供试品溶液的制备 取大黄粉末(过 80 目 筛)约 0.15 g,精密称定,置 50 mL锥形瓶中,精密 加甲醇 25 mL, 称定质量, 加热回流 60 min, 放冷, 再称定质量,用甲醇补足减失的质量,摇匀,滤过, 精密量取续滤液 5 mL, 置 50 mL 鸡心瓶中, 挥去甲 醇,加8%盐酸溶液10 mL,超声处理2 min,再加氯 仿 10 mL, 加热回流 1 h, 冷却, 移置分液漏斗中, 用 少量氯仿洗涤容器,并人分液漏斗中,分取氯仿层, 酸液再用氯仿提取 3 次,每次约 10 mL,合并氯仿 液, 减压回收氯仿至干, 残渣加甲醇使溶解, 转移至 10 mL量瓶中,定容,摇匀,滤过(0.45 µm滤膜), 即得。
- 2.1.5 标准曲线考察 精密吸取芦荟大黄素、大黄 酸、大黄素、大黄酚、大黄素甲醚对照品溶液 (0.0203, 0.0208, 0.0242, 0.0254, 0.0173 mg· mL 1) 2, 4, 6, 10, 12 μL, 分别注入高效液相色谱仪, 测定峰面积,以对照品进样量为横坐标,峰面积为纵 坐标,绘制标准曲线,回归方程为芦荟大黄素 Y= $5.50 \times 10^4 X$ - 2.10 × 10, r = 0.9999, 线性范围 0.040 6~0.243 6 µg; 大黄酸 Y=4.16 ×10³ X-2.65

- ×10, r=0.9999, 线性范围0.0416~0.2496 µg; 大 黄素 Y=3.79 ×10³ X-2.02 ×10, r=0.999 9, 线性 范围0.048 4 ~0.290 4 μg; 大黄酚 Y= 5.30 ×10³ X - 2.86 ×10, r=0.9999, 线性范围0.0508~0.3048 μg ; 大黄素甲醚 Y=2.80X-9.12, r=0.9999, 线性 范围0.0346~0.2076 µg。
- 精密吸取供试品溶液, 重复进 2.1.6 精密度试验 样 5 次, 测定峰面积, 结果芦荟大黄素、大黄酸、大黄 素、大黄酚、大黄素甲醚峰面积 RSD% 分别为 1.5, 1. 8, 0. 80, 0. 76, 1. 2.
- 2.1.7 稳定性试验 取供试品溶液避光室温放置, 分别于制备后 0, 3, 6, 9, 12, 24 h 进行测定, 结果芦 荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚峰面 积 RSD 分别为 1.0%, 0.84%, 0.60%, 0.52%, 0.49%。表明5种蒽醌在24h内基本稳定。
- 2.1.8 重复性试验 精密称取大黄样品 5 份,制成 供试品溶液,进行测定,芦荟大黄素、大黄酸、大黄 素、大黄酚、大黄素甲醚含量的 RSD 均小于 5%,说 明含测方法可行。
- 2.1.9 加样回收率试验 采用加样回收法,精密称 取已知含量的大黄样品约 80 mg, 分别精密加入芦荟 大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚对照品 甲醇溶液,制成供试品溶液,进行测定,计算回收率 依次为 97.9%, 97.1%, 97.6%, 97.4%, 99.1%。 RSD 分别为 1.4%, 1.1%, 0.90%, 1.1%, 2.2%, 见 表 1。
- 2.1.10 样品含量测定 对甘肃铨水大黄上述 5 种 趁鲜加工的样品及大黄不同品种样品, 5 种蒽醌含 量进行测定,方法为分别精密吸取对照品溶液与供 试品溶液各 10 µL, 注入液相色谱仪, 测定, 即得。

3 结果

含量测定结果见表 2~5。表 2结果表明大黄 I切片后,采用不同加工方法,5种蒽醌总含量高低 依次为工厂微波干燥 > 阴干 > 实验室微波 > 中医 院烘干; 大黄 II 的片、条干燥加工中, 五种蒽醌含 量均为阴干高于冷冻干燥。表3结果表明工厂微 波规模化生产干燥的大黄片和条与阴干的片,其5 种蒽醌含量均高于其他的干燥方法。其中工厂微 波 20 kW, 450 SD 一次含量最高。表 4 结果表明红 根大黄5种蒽醌总量有高于白根大黄含量的趋势。 表 5 结果表明抽苔大黄 5 种蒽醌总量明显高于不 抽苔的大黄。

表 1 芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素加样回收率测定

衣 I 户 尝 入							
测定成分	称样量	样品含量	测得量	回收率	平均值	RSD	
	/mg	/g	/mg	/%	/%	/%	
芦荟大黄素	80.06	0. 265 8	0. 530 0	95. 7	97. 9	1. 4	
	82.34	0. 273 4	0. 546 0	98. 8			
	82.68	0. 274 5	0. 546 5	98. 6			
	81.22	0. 269 7	0. 538 0	97. 2			
	82.96	0. 275 4	0. 549 0	99. 1			
大黄酸	81.02	0. 478 0	0. 904 5	95. 9	97. 1	1. 1	
	82.56	0. 487 1	0. 921 5	97. 7			
	81.06	0. 478 3	0. 906 5	96. 3			
	82.26	0. 485 3	0. 923 5	98. 5			
	81.00	0. 477 9	0. 909 5	97. 0			
大黄素	81.16	0. 293 8	0. 598 0	98. 3	97. 6	0. 90	
	82.77	0. 299 6	0. 606 0	98. 8			
	81.64	0. 295 5	0. 596 0	97. 1			
	80.61	0. 291 8	0. 592 5	97. 1			
	82.80	0. 299 7	0. 599 5	96. 8			
大黄酚	81.12	0. 721 2	1. 365 0	97. 2	97. 4	1. 1	
	80.88	0. 719 0	1. 372 0	98. 6			
	81.06	0. 720 6	1. 370 0	98. 0			
	81.00	0. 720 1	1. 365 5	97. 4			
	81.02	0. 720 3	1. 355 0	95. 8			
大黄素甲醚	82.46	0. 221 0	0. 441 5	96. 7	99. 1	2. 2	
	82.25	0. 220 4	0. 443 5	97. 9			
	81.92	0. 219 5	0. 444 5	98. 7			
	83.46	0. 223 7	0. 457 6	102. 6			
	83.12	0. 222 8	0. 450 0	99. 6			

4 讨论

本专题首先优选了大黄药材产地加工的方法, 避免了长期以来大黄炮制要二次重复浸润、切片再 加辅料炮制的重复操作,解决了原来产地加工时间长、糠芯、发霉、变质等关键问题。采用工厂微波干燥技术加工大黄,其5种蒽醌成分含量较其他方法

样品 饮片规格 大黄酚 干燥方法 芦荟大黄素 大黄酸 大黄素 大黄素甲醚 总量 片 号 0.373 0.2590.3370.757 0.146 1.872 大 号 0. 132 1.503 0. 264 0.192 0.335 0. 580 黄 号 0.392 0.2440.4970.9630.198 2.294 0.505 0.130 0. 194 0.137 0.313 1.279 片 号 0.2991. 080 0.470 0.3260.177 2.352 大 0.388 0.3201. 002 0.154 2.0810.217 黄 条 号 0.488 1. 052 0. 231 2.690 0.4800.439

0.262

0.352

0.893

0.159

2.002

表 2 三年生铨水大黄不同加工方法的比较

注:大黄Ⅰ和大黄Ⅱ号为两个单个大黄,进行不同加工干燥方法处理

0.336

号

II

表 3 三年生铨水大黄不同加工条件的比较(中试量)

饮片规格	干燥方法	芦荟大黄素	大黄酸	大黄素	大黄酚	大黄素甲醚	总量
片	号	0. 381	0. 271	0.418	0. 822	0.195	2. 087
	号	0. 375	0. 340	0. 365	0. 765	0.213	2. 058
片	号	0. 333	0. 201	0.496	0. 930	0.225	2. 185
	号	0. 305	0. 222	0.366	0. 823	0.185	1. 901
	号	0. 222	0. 190	0.473	0. 625	0.174	1. 684
条	号	0. 209	0. 161	0.467	0. 723	0.230	1. 790
	号	0. 224	0. 240	0.468	0. 585	0.163	1. 680
片	号低温	0. 185	0. 149	0. 251	0. 566	0.168	1. 319
	高温	0. 098	0. 074	0.133	0. 257	0.062	0. 624
片	号	0. 329	0. 197	0. 333	0. 641	0.155	1. 655
		表 4 三年生铨	水大黄不同变异	品种红根大黄与白	日根 大黄成 分比 轺	· Σ	%
样品产地	品种	芦荟大黄素	大黄酸	大黄素	大黄酚	大黄素甲醚	 总量
官亭大黄	红根	0. 308	0. 219	0.210	0. 890	0.147	1. 774
	白根	0. 184	0. 114	0. 176	0. 591	0.102	1. 167
沙井大黄	红根	0. 321	0. 251	0. 172	0. 557	0.119	1. 420
	白根	0. 253	0. 130	0.136	0. 718	0.117	1. 354

表 5	礼县白关乡	; 试 验点三 年生 大黄抽 苔与 不抽苔 比较

0.201

0.242

0.238

0.243

0. 542

1. 015

0.982

0.992

0.319

0. 172

0. 234

0.137

样品	芦荟大黄素	大黄酸	大黄素	大黄酚	大黄素甲醚	总量	比值
三年生抽苔	0. 606	0. 333	0.776	2.189	0. 482	4. 386	1. 00
三年生不抽苔	0. 360	0. 224	0.309	0.836	0. 152	1. 881	0. 43

为高,其中参数为 20 kW,450 SD 一次干燥蒽醌含量最高,饮片外观性状也很好,且方法简单,干燥所需时间短。因此微波干燥技术是适用于大黄干燥的一种较好的方法,适合于大黄产地干燥加工规模化生产。用冷冻干燥对成分造成损失也较小,但由于设备限制每次干燥数量较少,成本高,难于形成干燥加工的规模化大生产,因此不能推广应用,实验数据仅作为实验方法比较研究,不推荐采用。阴干所用时间太长,费工费时,且需要大面积避光晾晒场。

红根

白根

红根

白根

0.286

0.298

0.370

0.246

好梯I大黄

好梯 II 大黄

在大黄的栽培过程中,药农认为抽苔是提高大黄质量的重要环节,抽苔后有利于大黄有效物质的积累,提高有效成分的含量。本实验结果证明,抽苔

后其有效成分的含量确实提高 1 倍 多, 实验证明药农的栽培经验是有科学道理的。

0.061

0.165

0.113

0.160

1. 409

1.892

1. 937

1. 778

%

[参考文献]

- [1] 徐翔, 郦柏平, 徐慧芬. 大黄研究进展[J]. 上海中医药杂志, 2003, 37(4):56.
- [2] 丁玉玲. 大黄蒽醌类的研究概况[J]. 时珍国医国药, 2005, 16(11): 1160.
- [3] 国家药典委员会. 中华人民共和国药典[M]. 一部. 北京: 化学工业出版社, 2005: 17.

[责任编辑 顾雪竹]